Query & integrate data#
import lamindb as ln
import bionty as bt
馃挕 connected lamindb: testuser1/test-facs
ln.transform.stem_uid = "wukchS8V976U"
ln.transform.version = "0"
ln.track()
馃挕 notebook imports: bionty==0.42.4 lamindb==0.69.2
馃挕 saved: Transform(uid='wukchS8V976U6K79', name='Query & integrate data', key='facs3', version='0', type=notebook, updated_at=2024-03-28 12:12:23 UTC, created_by_id=1)
馃挕 saved: Run(uid='Wu3s4EfuMBjnuabJLhGi', transform_id=3, created_by_id=1)
Inspect the CellMarker registry #
Inspect your aggregated cell marker registry as a DataFrame
:
bt.CellMarker.df().head()
uid | name | synonyms | gene_symbol | ncbi_gene_id | uniprotkb_id | organism_id | public_source_id | created_at | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|
id | |||||||||||
41 | 7SyRazPQeCqG | CD14/19 | None | None | None | None | 1 | NaN | 2024-03-28 12:12:17.074598+00:00 | 2024-03-28 12:12:17.074624+00:00 | 1 |
40 | 6ASIQ7GR2c39 | CD103 | ITGAE | 3682 | P38570 | 1 | 18.0 | 2024-03-28 12:12:17.035273+00:00 | 2024-03-28 12:12:17.035284+00:00 | 1 | |
39 | 7OES2NXy0W6C | CD69 | CD69 | 969 | Q07108 | 1 | 18.0 | 2024-03-28 12:12:17.035175+00:00 | 2024-03-28 12:12:17.035187+00:00 | 1 | |
38 | 4Y0JkNLWc8tl | CD49B | ITGA2 | 3673 | P17301 | 1 | 18.0 | 2024-03-28 12:12:17.035070+00:00 | 2024-03-28 12:12:17.035081+00:00 | 1 | |
37 | 2ddvD3rZZ38f | CXCR4 | CXCR4 | 7852 | P61073 | 1 | 18.0 | 2024-03-28 12:12:17.034968+00:00 | 2024-03-28 12:12:17.034981+00:00 | 1 |
Search for a marker (synonyms aware):
bt.CellMarker.search("PD-1").head(2)
uid | synonyms | score | |
---|---|---|---|
name | |||
PD1 | 6c7MomnrsfYu | PID1|PD-1|PD 1 | 100.0 |
CD14/19 | 7SyRazPQeCqG | 54.5 |
Look up markers with auto-complete:
markers = bt.CellMarker.lookup()
markers.cd8
CellMarker(uid='5YxpB5QNiCWr', name='CD8', synonyms='', gene_symbol='CD8A', ncbi_gene_id='925', uniprotkb_id='P01732', updated_at=2024-03-28 12:12:01 UTC, organism_id=1, public_source_id=18, created_by_id=1)
Query artifacts by markers #
Query panels and collections based on markers, e.g., which collections have 'CD8'
in the flow panel:
panels_with_cd8 = ln.FeatureSet.filter(cell_markers=markers.cd8).all()
ln.Artifact.filter(feature_sets__in=panels_with_cd8).df()
uid | storage_id | key | suffix | accessor | description | version | size | hash | hash_type | n_objects | n_observations | transform_id | run_id | visibility | key_is_virtual | created_at | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | |||||||||||||||||||
1 | TegJbNDfqQuGlYUqjaqR | 1 | None | .h5ad | AnnData | Alpert19 | None | 33369696 | VsTnnzHN63ovNESaJtlRUQ | md5 | None | None | 1 | 1 | 1 | True | 2024-03-28 12:12:06.760256+00:00 | 2024-03-28 12:12:07.887079+00:00 | 1 |
2 | biRb1um0DljinoUvTiBq | 1 | None | .h5ad | AnnData | Oetjen18_t1 | None | 46501304 | I8nRS02iBs5z1J01b2qwOg | md5 | None | None | 2 | 2 | 1 | True | 2024-03-28 12:12:17.520458+00:00 | 2024-03-28 12:12:17.601604+00:00 | 1 |
Access registries:
features = ln.Feature.lookup()
Find shared cell markers between two files:
artifacts = ln.Artifact.filter(feature_sets__in=panels_with_cd8).list()
file1, file2 = artifacts[0], artifacts[1]
shared_markers = file1.features["var"] & file2.features["var"]
shared_markers.list("name")
['Cd4', 'CD8', 'CD3', 'CD27', 'Ccr7', 'CD45RA']